物联网无电池供电:自主设备的未来

物联网(IoT)设备正在快速改变我们的世界,预测显示到2025年将部署超过640亿台IoT设备。然而,这种大规模扩张带来了一个关键挑战:能源供应。传统的电池供电解决方案面临着重大限制,包括有限的寿命、环境影响以及定期更换的物流负担。解决方案在于无电池供电技术,它使IoT设备能够通过从周围环境中收集能量来自主运行。

IoT中的能源危机

电池挑战的规模令人震惊。如果当前趋势继续下去,到2025年全球每天将丢弃多达7800万块为IoT设备供电的电池。仅在美国,不到5%的锂离子电池被回收,造成了巨大的环境负担。电池中的有害化学物质,包括锂和钴,在未正确处置时对土壤和水系统构成重大风险。

传统电池限制在以下情况下变得特别严重:

  • 偏远地区,维护困难或不可能
  • 恶劣环境,加速电池降解
  • 大规模部署,电池更换在经济上不可行
  • 嵌入式应用,设备寿命必须超过电池寿命

无电池供电技术

能量收集源

无电池IoT设备通过复杂的收集技术利用多种环境能源:

太阳能收集

现代光伏系统在效率方面取得了显著改进。染料敏化太阳能电池(DSSC)现在在人工照明条件下实现高达34%的转换效率。有机光伏(OPV)电池为室内IoT应用提供高功率密度和延长的运行寿命。纽卡斯尔大学的开创性工作产生了集成光电容器,在典型室内照明下实现0.9V的创纪录光充电电压18%的整体充电效率

射频(RF)能量收集

RF能量收集捕获来自WiFi、蜂窝网络和广播电台的环境电磁信号。现代系统在-10 dBm输入功率下实现超过30%的转换效率RF能量收集市场经历了爆炸性增长,从2024年的218亿美元扩展到预期的2025年的280.6亿美元,代表28.7%的复合年增长率

热电发电机(TEG)

TEG系统将温度梯度转换为电能。基于碲化铋的材料在工业应用中实现1-10 mW/cm²的输出。可印刷热电材料的最新进展使得能够开发可经济高效制造的三维组件架构

压电能量收集

压电系统将机械振动转换为电能,提供高能量密度简单结构,无需外部电压源。先进的压电系统可以从单个收集器产生1.04 mW,在阵列实施中扩展到40.43 mW

先进能源管理

间歇式计算

无电池IoT设备在间歇式供电条件下运行,需要创新的计算方法。间歇式计算系统设计为将计算步骤和空闲期间编织在一起,在多个充电周期中分散复杂功能的执行。这种方法尽管存在能量约束,仍能实现复杂的AI和信号处理能力。

混合能源系统

现代无电池系统通常结合多种能源。混合光电容器将太阳能收集与超级电容器存储集成,即使在没有主要能源的期间也能实现连续运行。这些系统在推理吞吐量方面显示出比商用硅模块4倍的优异性能

市场动态和增长预测

市场规模和增长轨迹

全球能量收集市场在多个领域展现强劲增长:

能量收集系统市场

  • 2025年市场规模:6.343亿至8.5149亿美元
  • 2034年预测规模:19.8075亿至22亿美元
  • 复合年增长率:8.8%至9.83%

无电池传感器市场

  • 2025年市场规模:5550万至7320万美元
  • 2033-2035年预测规模:3.487亿至5.128亿美元
  • 复合年增长率:21.5%至22.66%

环境IoT设备预测

ABI Research预测环境IoT设备出货量将在2030年达到11亿台。能量收集方法的分布将是:

  • 57%光伏电池(5.76亿台设备)
  • 36% RF能量收集(3.96亿台设备)
  • 4%压电系统(4400万台设备)
  • 3%热电发电机(3300万台设备)

区域市场领导地位

北美由于以下因素领导市场:

  • 先进技术采用和强健的IoT基础设施
  • 战略产业伙伴关系和协作生态系统
  • 所有工业部门的高自动化水平
  • 强大的研发投资

亚太地区显示快速增长,驱动因素包括:

  • 主要新兴经济体(中国、印度、日本)
  • 智能家居采用增加和IoT部署
  • 支持智能基础设施的政府倡议
  • 5G网络普及,实现无电池通信

行业倡议和生态系统发展

环境IoT联盟

环境IoT联盟(AIoTA)成立于2025年2月,代表了一个全球跨行业联盟,致力于推广无电池IoT生态系统。创始成员包括:

  • Atmosic
  • 英飞凌科技
  • 英特尔
  • 百事可乐
  • 高通
  • VusionGroup
  • Wiliot

联盟的使命专注于开发开放、协调和一致的多标准生态系统,支持全球电信标准,包括蓝牙、5G Advanced和802.11bp

突破性技术

PassiveLiFi创新

IMDEA网络研究所开发了PassiveLiFi,这是一个革命性的无电池通信系统,结合了LiFi和RF反向散射技术。该系统使IoT设备能够:

  • 从LED和其他光源收集能量
  • 通过光调制接收数据(LiFi)
  • 通过RF反向散射反射传输数据
  • 每μW消耗实现80.3米通信范围

纽卡斯尔大学突破

纽卡斯尔大学开发的集成光电容器代表了无电池IoT技术的里程碑成就。该系统具有:

  • 三端光电容器架构
  • 环保蘑菇衍生壳聚糖膜
  • 每次推理0.8 mJ的图像识别任务中达到93%准确率
  • 相比商用硅模块3.5倍的优异性能

应用和用例

工业IoT

制造和生产

无电池传感器在工业环境中表现出色,其中:

  • 振动监测系统在机械上使用压电收集器
  • 高温环境中的温度感应利用热电发电机
  • 资产跟踪系统无维护运行数年
  • 预测性维护应用提供连续监测

石油天然气行业

海上平台远程管道监测代表理想应用:

  • 水下传感器通过压电系统由潮汐运动供电
  • 无线状态监测无需电池更换要求
  • 危险环境操作,电池维护构成安全风险

智慧城市和基础设施

环境监测

无电池传感器实现全面环境监控

  • 空气质量监测网络由太阳能收集供电
  • 水质传感器使用基于流动的能量产生
  • 噪音污染监测使用压电收集器
  • 交通流量优化通过嵌入式道路传感器

智能建筑

建筑自动化代表预测期内8.5%复合年增长率高增长细分市场

  • HVAC优化通过无线传感器网络
  • 占用检测使用RF能量收集
  • 安全系统由环境能源供电
  • 能源管理使用自供电监测设备

医疗保健和可穿戴设备

医疗设备应用

无电池技术实现革命性医疗保健解决方案

  • 持续健康监测无需电池更换
  • 植入式设备通过TEG由体热供电
  • 可穿戴健身追踪器使用动能收集
  • 在挑战性环境中远程患者监测

生物医学创新

先进应用包括:

  • 生物可吸收起搏器用于临时心脏监测
  • 皮下血糖监测系统
  • 眼内压监测设备
  • 延长运行寿命的人工耳蜗

技术挑战和解决方案

能效优化

电源管理创新

现代无电池系统采用复杂的电源管理集成电路(PMIC)

  • 优化超级电容器和可充电电池中的能量存储
  • 实施最大功率点跟踪以提高收集效率
  • 通过智能调度管理间歇操作
  • 为一致的设备操作提供电压调节

自适应计算策略

机器学习算法被集成以实现动态能源管理

  • 实时能源可用性评估
  • 基于功率条件的计算负载适应
  • 预测性能量收集优化
  • 智能占空比以延长操作

可靠性和性能

系统可靠性

研究表明太阳能收集器相比RF收集器表现出统计学显著更高的可靠性。关键可靠性因素包括:

  • 环境障碍对能量收集的影响
  • 季节性能量变化管理
  • 延长期间的组件降解
  • 能源短缺期间的故障安全操作

性能优化

先进系统实现显著的效率改进:

  • 集成整流电路达到57%峰值效率
  • 阻抗匹配网络优化功率传输
  • 能量存储系统提供功率缓冲
  • RF系统转换效率超过30%

未来技术方向

与AI和边缘计算的集成

边缘AI应用

无电池供电特别适合需要以下条件的边缘AI应用

  • 本地数据处理无需云依赖
  • 实时推理能力
  • 偏远地区的自主决策
  • 从环境数据持续学习

自适应AI系统

未来无电池IoT系统将具有:

  • 基于可用能量的动态CNN压缩
  • 针对功耗约束优化的自适应感知算法
  • 传感器网络中的分布式智能
  • 维持操作的自愈网络,尽管节点故障

先进材料和制造

下一代材料

研究专注于开发:

  • 室内应用的高效光伏材料
  • 转换比改进的先进热电材料
  • 可穿戴应用的柔性压电系统
  • 用于能量存储的新型超级电容器材料

制造创新

可扩展制造技术正在开发用于:

  • 热电发电机的3D打印
  • 柔性光伏电池的卷对卷处理
  • 基于折纸的组件折叠技术
  • 集成片上系统解决方案

环境和经济影响

环境效益

废物减少

无电池IoT技术提供显著的环境优势

  • 每年消除数万亿次电池更换
  • 减少有害化学物质处置
  • 最小化电子废物产生
  • 支持循环经济原则

碳足迹减少

该技术通过以下方式贡献可持续发展目标

  • 减少制造能源需求
  • 消除电池更换的运输
  • 降低维护碳足迹
  • 延长设备寿命减少更换需求

经济优势

成本降低

无电池系统提供实质性经济效益

  • 消除电池更换成本
  • 减少维护劳动需求
  • 设备生命周期内较低的总拥有成本
  • 大规模部署的可扩展性优势

市场机会

该技术创造新的市场机会

  • 连续监测的服务模式创新
  • 通过延长设备运行的数据货币化
  • 以前受电池限制约束的新应用领域
  • 通过全面跟踪的供应链优化

监管和标准化格局

标准开发

全球标准倡议

环境IoT联盟积极为以下标准化努力做出贡献:

  • IEEE Wi-Fi标准 (802.11bp)
  • 蓝牙SIG规范
  • 3GPP 5G Advanced协议
  • 国际能量收集标准

监管合规

无电池系统必须符合:

  • 能量收集的RF发射法规
  • 环境能量收集的安全标准
  • 可持续技术的环境法规
  • IoT应用的数据保护要求

政策支持

政府倡议

公共部门支持包括:

  • 能量收集技术的研究资助
  • 无电池系统的绿色技术激励
  • 整合环境IoT的智慧城市倡议
  • 支持采用的环境可持续性授权

结论

IoT无电池供电代表了向可持续、自主设备操作的根本性范式转变先进能量收集技术复杂电源管理系统创新计算方法的融合为免维护IoT部署创造了前所未有的机会。

市场轨迹在能量收集系统、无电池传感器和环境IoT设备方面显示出数十亿美元潜力的强劲增长。通过环境IoT联盟等倡议的行业合作正在加速标准化和生态系统发展

来自领先研究机构的突破性技术,包括纽卡斯尔大学的集成光电容器IMDEA网络的PassiveLiFi系统,正在证明无电池IoT解决方案的实用可行性。这些创新在保持稳健运行性能的同时实现了显著的效率改进

应用涵盖关键领域,包括工业自动化智慧城市医疗保健环境监测。随着这些技术的成熟,它们将实现真正自主的IoT生态系统,无需人工干预即可无限期运行。

环境和经济效益是实质性的,包括消除数十亿次电池更换减少有害废物降低总拥有成本。该技术支持全球可持续发展目标,同时创造新的市场机会商业模式

展望未来,IoT无电池供电将越来越多地与AI和边缘计算集成,实现智能自适应系统,根据实时能源可用性优化其运行。这种演进将解锁以前受电池限制约束的新应用领域部署场景

IoT的未来是无电池、可持续和自主的。随着收集技术的不断进步和制造成本的降低,无电池供电将成为为下一代IoT设备供电的标准方法,创造一个真正连接的世界,不受传统能源的约束。

[1] IoT Devices Will No Longer Need to Rely on Batteries to Operate https://www.hackster.io/news/iot-devices-will-no-longer-need-to-rely-on-batteries-to-operate-ef02b6ed3b08

[2] Advancing IoT: The Future of Self-Powered Devices Through Energy Harvesting https://techbullion.com/advancing-iot-the-future-of-self-powered-devices-through-energy-harvesting/

[3] New standard developed for battery-free, AI-enabled IoT devices https://techxplore.com/news/2025-04-standard-battery-free-ai-enabled.html

[4] A Thermoelectric Energy Harvesting Scheme with Passive Cooling for Outdoor IoT Sensors – DOAJ https://doaj.org/article/4a69624e616b4415b59ef54fb0b09235

[5] Piezoelectric Energy Harvesting Solutions: A Review https://pmc.ncbi.nlm.nih.gov/articles/PMC7349337/

[6] RF Energy Harvesting: Turning Ambient RF Signals into Power https://www.technology.org/2024/07/02/rf-energy-harvesting-turning-ambient-rf-signals-into-power/

[7] An integrated RF energy–harvesting system with broad input voltage range and high power conversion efficiency | PNAS https://www.pnas.org/doi/10.1073/pnas.2218976120

[8] Energy Harvesting for IOT – Status and Evaluation – Nanoprecise https://nanoprecise.io/blog/energy-harvesting-for-iot-status-and-evaluation/

[9] The Internet of Batteryless Things – Communications of the ACM https://cacm.acm.org/research/the-internet-of-batteryless-things/

[10] A Glimpse into the Batteryless Future of the Internet of Things https://www.informatik.tu-darmstadt.de/fb20/aktuelles_fb20/fb20_news/news_fb20_details_297024.en.jsp

[11] Wireless Power Transfer for IoT Devices – WizzDev https://wizzdev.com/blog/wireless-power-transfer-for-iot-devices/

[12] IoT breakthrough lets battery-free devices power up from environment https://www.cnbc.com/2025/03/10/iot-breakthrough-lets-battery-free-devices-power-up-from-environment.html

[13] Energy Harvesting Market Size & Outlook 2025 to 2035 https://www.futuremarketinsights.com/reports/global-energy-harvesting-market

[14] IoT Energy Harvesting Market Report, [2033] https://www.businessresearchinsights.com/market-reports/iot-energy-harvesting-market-124806

[15] Energy Harvesting Systems Market Share & Forecast, 2025-2032 https://www.coherentmarketinsights.com/market-insight/energy-harvesting-systems-market-5671

[16] Wireless and battery-free sensors for sustainable smart cities – Chemical Engineering https://che.engin.umich.edu/2023/09/20/wireless-and-battery-free-sensors-for-sustainable-smart-cities/

[17] Wireless and battery-free sensors for sustainable smart cities https://ece.engin.umich.edu/stories/wireless-and-battery-free-sensors-for-sustainable-smart-cities

[18] What is Thermoelectric Energy Harvesting? – ONiO https://www.onio.com/article/what-is-thermoelectric-harvesting.html

[19] A Thermoelectric Energy Harvester Based on Microstructured Quasicrystalline Solar Absorber – PubMed https://pubmed.ncbi.nlm.nih.gov/33918230/

[20] [PDF] The Internet of Batteryless Things – TU Delft Research Portal https://research.tudelft.nl/files/180897579/3624718.pdf

[21] Differences in Reliability and Predictability of Harvested Energy from Battery-less Intermittently Powered Systems https://users.wpi.edu/~bislam/bashlab/publication/harvester/

[22] Power your IoT devices without batteries! – Electronics Maker https://electronicsmaker.com/power-your-iot-devices-without-batteries

[23] How Edge Computing Can Solve AI’s Energy Crisis | Built In https://builtin.com/artificial-intelligence/edge-ai-energy-solution

[24] Energy-Aware AI-Driven Framework for Edge-Computing-Based IoT Applications https://arrow.tudublin.ie/engscheleart2/344/

[25] file.pdf https://ppl-ai-file-upload.s3.amazonaws.com/web/direct-files/attachments/67414564/3ac40c74-f285-40af-87a1-d5428234a305/file.pdf

[26] ZERO: Towards Energy Autonomous Systems for IoT | NWO https://www.nwo.nl/en/researchprogrammes/perspectief/perspectief-grants/zero-towards-energy-autonomous-systems-for-iot

[27] Batteryless IoT – What It Is And Why It Matters – ONiO https://www.onio.com/article/batteryless-iot-why-it-matters.html

[28] capturing environmental energy to power IoT devices https://telefonicatech.com/en/blog/waht-is-energy-harvesting-iot

[29] Self-Powered IoT Device for Indoor Applications https://uia.brage.unit.no/uia-xmlui/bitstream/handle/11250/2596156/self-powered-iot-device.pdf?sequence=2&isAllowed=y

[30] Batteryless electronics – energy harvesting – FORCE Technology https://forcetechnology.com/en/articles/batteryless-electronics-energy-harvesting

[31] The importance of energy harvesting in IoT – SODAQ https://sodaq.com/the-importance-of-energy-harvesting-in-iot/

[32] Self Powered IoT Systems https://web.northeastern.edu/ecl/?page_id=282

[33] IoT Devices Harvest Their Own Energy https://www.aeris.com/resources/iot-devices-harvest-their-own-energy/

[34] Powering the future of the Internet of Things https://cemse.kaust.edu.sa/articles/2024/08/28/powering-future-internet-things

[35] Self-powered IoT https://www.perle.com/articles/self-powered-iot-40194296.shtml

[36] Smart Energy Harvesting for Internet of Things Networks https://pmc.ncbi.nlm.nih.gov/articles/PMC8069813/

[37] Autonomous-IoT https://www.autonomous-iot.com

[38] Low-Power Circuits and Energy-Aware Protocols for Connecting… https://openreview.net/forum?id=uWlkMxjs1O

[39] Making energy harvesting work for edge IoT devices – Embedded https://www.embedded.com/making-energy-harvesting-work-for-edge-iot-devices/

[40] A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits https://www.degruyter.com/document/doi/10.1515/ehs-2016-0028/html?lang=en&srsltid=AfmBOorqsmtgy7bgv3LueQpdnJ1xEDLpHdTzaGg47EzSWM1WR9lz4yOr

[41] Radio Frequency (RF) Energy Harvesting Principles, Techniques, and Applications Electrical – Studocu https://www.studocu.com/en-gb/document/teesside-university/electrical-engineering/radio-frequency-rf-energy-harvesting-principles-techniques-and-applications-electrical-engineering/59410855

[42] A Thermoelectric Energy Harvesting Scheme with Passive Cooling … https://www.mdpi.com/1996-1073/13/11/2782

[43] Volume 65, Issue 3, 2021 https://www.bhu.ac.in/research_pub/jsr/Volumes/JSR_65_03_2021/20.pdf

[44] RF Energy Harvesting. Explanation* https://www.youtube.com/watch?v=SavQDg3B7gk

[45] Soil-Based Thermoelectric Energy Harvesting System for IoT Devices https://eudl.eu/doi/10.1007/978-3-031-84426-3_8

[46] Piezoelectric Energy Harvesting Solutions: A Review – PubMed https://pubmed.ncbi.nlm.nih.gov/32575888/

[47] Radio Frequency Energy Harvesting Technologies – PubMed Central https://pmc.ncbi.nlm.nih.gov/articles/PMC9185291/

[48] Environment-Monitoring IoT Devices Powered by a TEG Which Converts Thermal Flux between Air and Near-Surface Soil into Electrical Energy – PubMed https://pubmed.ncbi.nlm.nih.gov/34884107/

[49] Piezoelectric Energy Harvester Technologies: Synthesis, Mechanisms, and Multifunctional Applications – PubMed https://pubmed.ncbi.nlm.nih.gov/38739105/

[50] Piezoelectric Energy Harvesters | PIEZO.COM https://piezo.com/collections/piezoelectric-energy-harvesters

[51] RF Energy-Harvesting Techniques: Applications, Recent … – MDPI https://www.mdpi.com/2673-4001/6/3/45

[52] Thermal energy harvester using ambient temperature fluctuations for self-powered wireless IoT sensing systems: A review https://tohoku.elsevierpure.com/en/publications/thermal-energy-harvester-using-ambient-temperature-fluctuations-f

[53] Piezoelectric Energy Harvester Technologies – ACS Publications https://pubs.acs.org/doi/10.1021/acsami.3c17037

[54] doi:10.1016/j.sna.2009.02.024 https://www.ece.nus.edu.sg/stfpage/elelc/Publication/2009/62.%20S&AA_09V156_1_Theoretical%20comparison%20of%20the%20energy%20harvesting%20capability%20among%20various%20electrostatic%20mechanisms%20from%20structure%20aspect.pdf

[55] Challenges and Opportunities in Batteryless Intermittent Networks https://xml.thinkonweb.com/journals/jcn/full-text/1070

[56] Comparison between four piezoelectric energy harvesting circuits https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0031-z

[57] Energy Harvesting System Market Size and Forecast 2025 to 2034 https://www.precedenceresearch.com/energy-harvesting-system-market

[58] Energy Harvesting Market Size, Analysis Report 2025-2034 https://www.gminsights.com/industry-analysis/energy-harvesting-market

[59] Recent Advancements in Sources of Energy Harvesting https://www.ijert.org/research/recent-advancements-in-sources-of-energy-harvesting-IJERTV3IS052211.pdf

[60] Global Energy Harvesting Market (2020 to 2025) – Key Drivers, Constraints and Challenges – ResearchAndMarkets.com https://www.businesswire.com/news/home/20200604005538/en/Global-Energy-Harvesting-Market-2020-to-2025—Key-Drivers-Constraints-and-Challenges—ResearchAndMarkets.com

[61] On the efficiency of energy harvesters: A classification of dynamics in miniaturized generators under low-frequency excitation – Thijs WA Blad, Nima Tolou, 2019 https://journals.sagepub.com/doi/10.1177/1045389X19862621

[62] Select language https://www.proquest.com/docview/2756722965

[63] Performance limit for base-excited energy harvesting, and comparison with https://arxiv.org/pdf/2005.07447.pdf

[64] Decoding Market Trends in Energy Harvesting Systems: 2025-2033 … https://www.marketreportanalytics.com/reports/energy-harvesting-systems-58296

[65] Powering the Next Generation of IoT Applications with Wireless … https://energous.com/company/newsroom/blog/powering-the-next-generation-of-iot-applications-with-wireless-charging/

[66] Leveraging Edge Computing and AI in Energy Management https://utilitiesone.com/leveraging-edge-computing-and-ai-in-energy-management

[67] [PDF] Wireless Power Transmission for the Internet of Things (IoT) – SMEC https://www.smec.ac.in/assets/images/research/ece/21-22/25.Wireless%20Power%20Transmission%20for%20the%20Internet%20of%20Things%20(IoT).pdf

[68] Energy Efficient Edge Computing https://www.research.unipd.it/handle/11577/3550647

[69] Real-World use cases for batteryless IoT sensors – ONiO https://www.onio.com/article/real-world-use-cases-for-batteryless-iot-sensors.html

[70] Transforming the Internet of Things network with wireless transfer of power https://www.innovationnewsnetwork.com/transforming-iot-network-wireless-transfer-of-power/22283/

[71] Edge AI: A Sustainable and Scalable Solution for the Future – Embedded https://www.embedded.com/edge-ai-a-sustainable-and-scalable-solution-for-the-future

[72] Smart sensors soak up free electricity from their environment https://cordis.europa.eu/article/id/92214-smart-sensors-soak-up-free-electricity-from-their-environment

[73] RF Power Transmission for Self-sustaining Miniaturized IoT Devices https://arxiv.org/html/2407.21455v1

[74] Emerging Opportunities for Battery-free Wireless Sensors https://www.researchandmarkets.com/reports/5695867/emerging-opportunities-for-battery-free-wireless

[75] This article has been accepted for publication in the proceedings of the 2022 29th IEEE International Conference on Electronics, Circuits https://arxiv.org/pdf/2407.21455.pdf

[76] Leveraging IoT, Cloud, and Edge Computing with AI – MDPI https://www.mdpi.com/1424-8220/25/6/1763

[77] 5G-enabled, battery-less smart skins for self-monitoring megastructures and digital twin applications – PubMed https://pubmed.ncbi.nlm.nih.gov/38693170/

[78] www.a-star.edu.sg/ https://www.a-star.edu.sg/docs/librariesprovider15/ihpc-library/wireless-energy-technology-for-iiot.pdf?sfvrsn=c18a6b38_2

[79] AI based energy harvesting security methods: A survey – ScienceDirect https://www.sciencedirect.com/science/article/pii/S2405959523000644